Albert Teen
powered by
Albert logo

YOU ARE LEARNING:

pointer
Mutually Exclusive Events
lessonMenuButton

Mutually Exclusive Events

lesson introduction

Mutually Exclusive Events

Events that cannot happen at the same time are known as mutually exclusive.

1

Mutually exclusive events are events that cannot happen at the same time. Which option below shows mutually exclusive events?

hint button
block image
2

Consider these two events - are they mutually exclusive?

 1. Rolling a 6
 2. Not rolling a 6
hint button
block image
3

The two events rolling a 6 and not rolling a 6 are special - they are mutually exclusive and exhaustive. What does this mean?

hint button
block image
4

Mutually exclusive events are exhaustive if it is certain that one of them will happen.

Another example is: 1. Picking a yellow ball from this bag 2. Not picking a yellow ball from this bag

block image
1

Exhaustive mutually exclusive events have a special property. We have seen that it is certain we will either roll a 6 or not roll a 6. On the probability scale, what number indicates the probability is certain?

hint button
block image
2

This is a really important result and we can write it as follows:

P(6)+P(not6)=1P(6)+P(not6)=1.

block image
3

This means we can easily find the probability of an event not happening. We know that P(6)=16P(6)=\frac{1}{6}, so what is P(not6)P(not6)?

hint button
block image
1

We noted that these two events are mutually exclusive and exhaustive.

P(Y)P(Y) - picking a yellow ball from this bag P(notY)P(notY) - not picking a yellow ball from this bag

block image
2

What is P(Y)P(Y)? Give your answer as a fraction.

hint button
block image
3

Now we know that P(Y)=210P(Y)=\frac{2}{10} what is P(notY)P(notY)? Give your answer as a fraction.

hint button
block image

There is a 25%25\% chance of rain at 9am. What is the probability that it won't rain? Give your answer as a percentage.

hint button
1

Peter has worked out that his football team win 40%40\% of the time. What is the probability that they will lose the next match?

hint button
2

We have found we cannot find the probability of losing the next football match if we only know the probability of winning.

This is because winning and losing are mutually exclusive, but they are not exhaustive as it is also possible to draw.

3

Peter finds more data and works out that his football team win 40%40\% of the time and draw 25%25\% of the time. What is the probability that they will lose the next match?

hint button
4

For the probability of mutually exclusive events to add to 11 they must be exhaustive.

In a football match there are three possible mutually exclusive events - win, lose, draw. In tossing a coin there are two - heads, tails.

1

Summary! Mutually exclusive events are events that cannot happen at the same time.

When rolling one die we cannot get a 5 and a 6 at the same time.

block image
2

The sum of exhaustive mutually exclusive events is 11.

We will either pick a red ball or a green ball from this bag. P(R)+P(G)=67+17=1P(R)+P(G)=\frac{6}{7}+\frac{1}{7}=1.

block image
3

Knowing that the sum of exhaustive mutually exclusive events is 11 means we can work out the probability of something not happening.

P(not6)=1P(6)P(not6)=1-P(6) which is 1P(6)=116=561-P(6)=1-\frac{1}{6}=\frac{5}{6}.

block image